2020 Strategic Analysis of Energy Storage in California

Ethan Elkind University of California, Berkeley & Los Angeles Schools of Law

October 5, 2011 Berkeley Law

2020 Strategic Analysis of Energy Storage in California

Presentation Overview

Project Overview (Team, Goals, Tasks)
 Key Findings (Technology & Policy)
 Contact Info

Project Team

- California Institute for Energy and Environment (CIEE)
- University of California, Berkeley School of Law
- University of California, Los Angeles
- University of California, San Diego

Goals

- Establish 2020 Energy Storage Vision for California
 - Develop scenarios for deploying energy storage
 - Discuss costs and benefits compared to nonenergy storage scenario.
- Identify research needs on technologies and applications
- Assist CPUC and other regulatory agencies to create an energy storage roadmap

Project Overview

- Part 1: (A) Technology status review (B) Regulatory and policy review.
- Part 2: Strategic vision of energy storage scenarios over next ten years.

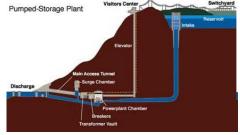
 Highlights value of energy storage to meet future state energy goals

Project Approach

- Survey existing technical and cost data & energy policy documents
- Analyze state and federal policies affecting energy storage
- Identify critical policies by entity responsible
- Analyze feasibility of accelerated deployment by 2015 and 2020 for key applications

Key Findings: Technology

Electrochemical energy storage:


- Promising technologies include advanced leadacid, Li-Ion, Flow batteries
- Cost reductions needed
- Safety issues need to be engineered into systems
- Limited field demonstrations/deployment in utility scale applications

Key Findings: Technology (cont.)

Mechanical energy storage:

- Promising technologies include pumped hydro, compressed air, flywheels
- Some technologies are mature
- Siting concerns
- Roundtrip efficiencies
- High capital costs for pumped hydro and compressed air

Key Findings: Technology (cont.)

- Thermal energy storage:
 - Promising technologies include solar thermal and HVAC applications
 - Mature technologies
 - Application specific may limit potential for deployment

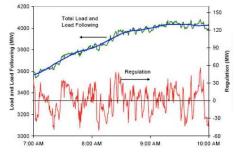
Hydrogen:

- High capital cost
- Very low roundtrip efficiency
- Design improvements needed

 Unproven field experience as energy storage system for grid support

Technology Needs

- Bulk and field energy storage demonstrations for variable renewable energy integration
- Evaluation/demonstration of aggregated storage, especially in Smart Grid scenario
- Cost/benefit quantification in grid applications
- Modeling impact of 33% renewable energy on California's electricity grid


Key Findings: Policy Needs

- Studies indicate 3-4000 MW needed for 33% RPS
- Three exemplary applications
 - Frequency Regulation
 - Renewables Grid Integration
 - Community Energy Storage/ DESS

Promising Applications Analysis

Application 1: Frequency Regulation

- Benefits
 - Reduce (1) regulation capacity needs, (2) reliance on conventional resources and stress on generator equipment, and (3) GHG emissions
- Cost Factors
 - High value market but limited market size
 - Value likely to increase

Accelerated Frequency Regulation Scenario

- FERC, CAISO lowering wholesale market barriers
- CAISO reward speed and accuracy
- CPUC:
 - Long-term contract capability
 - Resource Adequacy (RA) value
 - AB 2514 Targets
 - Monetize environmental benefits

Application 2: Renewables Grid Integration

Benefits

Reduce (1) Need for increased ramping,
 (2) curtailment, (3) integration costs, (4) T&D capacity expansion, (5) GHG emissions

Cost Factors

- Less \$ value, but potentially large market size
- Value streams defined but not all monetized

Accelerated Renewables Grid Integration Scenario

- CAISO PIRP value for forecast & delivery accuracy
- CPUC:
 - RA value or "adder"
 - Impose ramping limits on variable renewables
 - AB 2514 Targets

Application 3: Community Energy Storage (DESS)

Benefits

 Utility-side: Distribution deferral; lower variable DG integration costs; local reserve capacity

 Customer-side: Improved power quality, reliability, and value; outage mitigation

Cost Factors

- Potentially high value, may be highly localized
- Increased value close to high-penetration PV DG

Accelerated Community Energy Storage (DESS) Scenario

- Increasing variable distributed generation
- CPUC interconnection rules
- IOU smart grid plans
- Valuation of distribution deferral
- Avoided DG integration costs
- AB 2514 targets

Key Policy Areas

- Self-generating incentive program (AB 1150)
- Resource Adequacy (RA) program
- CPUC proceedings:
 - Smart Grid
 - Permanent load shifting
 - Demand response
 - Long-term procurement process
 - Alternative fueled vehicle
- Real-time pricing and strong price differentials
- California ISO and FERC opening markets
- AB 2514 Targets ("if any")

Possible AB 2514 Targets

Key Considerations

- CAISO grid needs under 33%
 - CEC-funded study of grid needs for DR and EES
- Market design changes under FERC, CAISO
- Purpose(s) must be well-defined
- Application-specific and Tiered
- CPUC should begin valuation work early and identify cost-recovery methods simultaneously

Policy Research Needs

- Communication technologies
- Complement demand response technologies
- Impacts of tariff changes at NY-ISO, ISO-NE, PJM, and other grid operators
- Valuation methodology based on best applications

Researcher Contact Info

 Andris R. Abele Senior Technology Strategist University of California, Los Angeles <u>aabele@ita.ucla.edu</u>

- Byron Washom
 Director of Strategic Energy Initiatives
 University of California, San Diego
 <u>bwashom@ucsd.edu</u>
- Steve Weissman
 Director, Energy and Cleantech Program
 University of California, Berkeley, School of Law
 <u>sweissman@law.berkeley.edu</u>

2020 Energy Storage Vision

Project Contacts

Avtar Bining
 Program Manager - Energy Storage
 California Energy Commission
 <u>abining@energy.state.ca.us</u>

Merwin Brown
 Director, Electric Grid Research
 California Institute for Energy and Environment
 <u>merwin.brown@uc-ciee.org</u>

Ethan Elkind
 Energy Storage Vision Project Principal Investigator
 University of California, Berkeley School of Law
 <u>Eelkind@law.berkeley.edu</u>

Thank You

2020 Strategic Analysis of Energy Storage in California